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SUMMARY 

i 
ONE -DIMENSIONAL APPROACH 

TO THE MAXIMUM LIFT-TO-DRAG RATIO -- 
OF A SLENDER, FLAT-TOP, HYPERSONIC WING (*) 

bY 

(**I ANGEL0 MIELE 

An investigation of the lift-to-drag ratio attainable by a slender, flat-top, 

affine wing at hypersonic speeds is presented under the assumptions that the 

pressure distribution is Newtonian m d  the skin-friction coefficient is constant. 

It is shown that a value of the thickness ratio exists such that the lift-to-drag 

ratio is a maximum; this particular value is such that the friction drag is one- 

third of the total drag. The subsequent optimization of the chordwise and spanwise 

(*) This research was supported by the Langley Research Center of the 

National Aeronautics and Space Administration under Grant No. NGR-44-006-045. 

(**) Professor of Astronautics and Director of the Aero-Astronautics Group, 

Department of Mechanical and Aerospace Engineering and Materials Science, Rice 

University, Houston, Texas . 
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contours is reduced to the extremization of products of powers of line integrals related 

t o  the lift, the pressure drag, and the skin-friction drag. For the chordwise contour, 

the variational approach shows that a linear thickness distribution is the best. For 

the spanwise contour, a thickness distribution proportional to  the chord distribution 

is the best. The lift-to-drag ratio of the variational solution is independent of the 

chord distribution and depends on the friction coefficient only. For a friction 

- 3  coefficient Cf = 10 , the maximum attainable lift-to-drag ratio is E = 5.29 .  
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1 .  INTRODUCTION 

In a previous report (Ref. l), an  investigation of the lift-to-drag ratio 

attainable by a slender, flat-top, affine wing at hypersonic speeds was presented 

under the assumptions that the pressure distribution is Newtonian and the skin- 

friction coefficient is constant. Direct methods were employed and the analysis 

was confined to the class of wings whose chordwise thickness distribution is a 

power law and whose spanwise thickness distribution is proportional to some 

power of the chord distribution. For these special wings, the lift-to-drag 

ratio depends on three parameters: the thickness ratio, the chordwise power law 

exponent, and the spanwise power law exponent. Therefore, by means of the 

ordinary theory of maxima and minima, the combination of parameters maximizing 

In this report, the limitations set forth in Ref. 1 are removed and the indirect 

methods of calculus of variations are employed in order to  determine the optimum 

chordwise and spanwise contours. The hypotheses employed are as follows: 
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(a) a plane of symmetry exists between the left-hand and right-hand par ts  of the 

wing; (b) the upper surface of the wing is flat (reference plane); (c) the wing is 

slender in both the chordwise and spanwise senses, that i s ,  the squares of both the 

chordwise and spanwise slopes are small  with respect t o  one; (d) the wing is affine, 

in the sense that each chordwise section can be generated from the root section by 

a linear transformation not involving rotation; (e) the free-stream velocity is 

parallel to the line of intersection of the plane of symmetry and the reference plane; 

(f) the pressure coefficient is twice the cosine squared of the angle formed by the 

free-stream velocity and the normal t o  each surface element; (g) the skin-friction 

coefficient is constant; and (h) the contribution of the tangential forces to the lift 

is negligible with respect to the contribution of the normal forces. 
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W e  consider the class of flat-top wings and define a Cartesian coordinate 

system Oxyz as follows (Fig. 1): the origin 0 is the apex of the wing; the x-axis 

is the intersection of the plane of symmetry and the reference plane, positive 

toward the trailing edge; the z-axis is contained in the plane of symmetry, 

perpendicular to the x-axis, and positive downward; and the y-axis is such that 

the xyz-system is right-handed. 

W e  express the geometry of the planform and the thickness distribution 

on the periphery of the planform in the form 

Leading edge 

Trailing- edge 

x = m ( y ) ,  z = o  

and write the spanwise chord distribution as 

C(Y) = n W  - m ( y )  

x = n ( y )  , z = t ( y )  
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with 

0 5 y 5 b/2 

where b is the wing span. Next, we focus our attention on those wings z (x, y)  

such that any chordwise contour can be generated from the root contour by means 

of a linear wansformation not involving rotatiw. The geometry of the lower 

surface of these affine wings is given by 

where the nondimensional chordwise coordinate 4 and the nondimensional spanwise 

coordinate q a r e  defined as 

and, hence, vary between the limits 0 and 1 .  Also, A (5) is a function describing 

the chordwise thickness distribution such that 

A ( 0 ) = 0  , A ( 1 ) = 1  
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and B(q) is a function describing the spanwise thickness distribution such that 

B(0) = 1 

With this understanding and in  the light of the hypotheses of the introduction, 

the drag and the lift can be rewritten as 

(7) 

2 
L/qbc(O) = T 13J3 

In Eq. (S), the positive quantities I I are defined by 
1’ 3 

1 e 2  -1 .3 
I = i  A d ?  , I , = [  A d 5  
1 Jo L O  

where A = dA/dE. Also, the positive quantities J,, J, , J3 are defined as 

3 
J, = 2 5 ,  J 2 = 2 K 2  , J = 2 K  

3 

where 

1 3 2  1 1 

.’ 0 ,! 0 3 .-‘o K1 f (B /C )dq , K 2 =  r Cdq , K = f (B2/C)d-q 

Incidentally, the function C(q) describes the chord distribution and is such that 

C(0) = 1 

(9) 
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3 .  LIFT-TO- DRAG RATIO 

From the previous formulas, it appears that--if the root chord c (o), the 

span b, the thickness ratio T, the chordwise contour A(?), the spanwise contour 

B (rl), and the chord distribution C (T) are given--the drag and the lift can be 

evaluated from Eqs . (8) through (11). Once these quantities are known, one can 

determine the aerodynamic efficiency ar lift-to-drag ratio 

E =. L/D 

which, in  the light of Eqs . (8), can be written as 

and, clearly, is independent of the size of the body. 



- 

4 .  OPTIMUM THICKNESS RATIO 

W e  now assume that the chordwise contour A(F), the spanwise contour 

B(Q, and the chord distribution C (q) are  arbitrarily prescribed, and study the 

effect of the thickness ratio T on the lift-to-drag ratio (14). Clearly, the 

lift-to-drag ratio is an extremum when the thickness ratio satisfies the relation- 

ship 

whose explicit form 

means that the friction drag is one-third of the total drae The associated 

lift-to-drag ratio is a v e n  by 
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and is a maximum owing to the fact that 

E,,= -(2/3Cf)13(J3/J2) = -(2/3cf)13(K3/K2) < O  

AAR- 14 
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5 .  0 ~ Y . M ~  CHORDWISE CONTOUR 

Next, we consider bodies optimized with respect to the thickness ratio, 

assume that the spanwise contour B(T) and the chord distribution C (7)  are 

arbitrarily prescribed, and study the effect of the longitudinal contour A(5) on 

the lift-to-drag ratio (17). Since the lift-to-drag ratio depends on the longitudinal 

contour through the expression 

3 2  
1 = 1 3 / 1  1 

we formulate the following problem: "In the class of functions A ( 5 )  which satisfy 

the end conditions (6 ) ,  find that particular function which extremizes the functional 

(19), where the integrals I1 , I are defined by Eqs. (9). " 3 

The functional (19) is a product of powers of integrals whose end points are 

fixed and is governed by the theory set forth in  Ref. 2. In this reference, it is 

shown that the previous problem is equivalent to that of extremizing the integral 

N 

I = F( i ,  A )  d5 
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where the fundamental function F is defined as 

and the undetermined, constant Lagrange multiplier is given by 

Since the fundamental function does not contain the variable A explicitly, 

the extremal solution is described by the Euler equation (see, for instance, 

Chapter 1 of Ref. 3) 

d F A /  d? = O  

which admits the first integral 

FA = Const 

After this equation is explicitly written as 
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we see that the slope A is constant. Therefore, the solution of the Euler equation 

(25) has the form 

(26) 2 
A = Cl?+ C 

where, because of the end conditions (6), the integration constants take the values 

C 1 = l ,  c2=o (27) 

In conclusion, the optimum contour is described by 

A =  5 

meaning that a linear thickness distribution is the best in the chordwise sense. 

For  this variational solution, the integrals (9) axe given by 

I = I  = 1  
1 3  

and the Lagrange multiplier (22) becomes 

X = 2/3 
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Finally, the optimum values of the thickness ratio (16) and the lift-to-drag ratio 1 

(17) become 

3- 3 3- 3/ 3 2  
7/./Cf = ,/2K2/K1 , E./Cf = (4/27) (K3 /K1 K2) 

Incidentally, the solution obtained maximizes the lift- to-drag ratio, owing to 

the fact that 



15 AAR- 14 

6 .  OPTIMUM SPANWISE CONTOUR 

Finally, we consider configurations optimized with respect t o  the thickness 

ratio 7 and the longitudinal contour A(4), assume that the chord distribution 

C(q) is arbitrarily given, and study the effect of the spanwise contour B ( 9  on 

the lift-to-drag ratio (31-2). Since the lift-to-drag ratio depends on the spanwise 

contour through the expression 

3 2  K = K3 /K1 K2 (33) 

we formulate the following problem: "In the class of functions B(q) which satisfy 

the initial condition (7), find that particular function which extremizes the functional 

(33), where the integrals K1, K , K are defined by Eqs. ( l l ) . "  2 3  

For each given chord distribution C(q), the functional (33) is a product of 

powers of integrals and is governed by the theory set forth in Ref. 2 .  Therefore, 

the previous problem is equivalent to that of extremizing the integral 
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where the fundamental function is defined as 

AAR-14 

2 3 2  F = B  /C - XIB /C - X C 
2 

and the undetermined, constant Lagrange multipliers are given by 

Xl=2K3/3K1 , X = K  /3K 2 3 2  

Since the fundamental function does not contain the derivative B explicitly, 

the extrema1 solution is described by the Euler equation (see, for instance, 

Chapter 1 of Ref. 3) 

F = O  B 

which, in explicit form, is given by 

2 
2(B/C) - 3X1(B/C) = 0 

and admits the solution 

B/C = Const 

Because of the  conditions (7) and (12), the value of the constant is one. Hence, 

the optimum spanwise thickness distribution is represented by 

B = C  

(35) 

(37) 

(39) 
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that i s ,  it is proportional t o  the prescribed chord distribution. For this 

variational solution, the integrals (11) a r e  given by 

and the Lagrange multipliers (36) become 

X = 2/3 , X = 1/3 
1 2 

Finally, the optimum values of the thickness ratio and the lift-to-drag ratio 

(31) become 

Incidentally, the solution obtained maximizes the lift-to-drag ratio, owing to the 

fact that 

=2/C - 6X1B/C 2 = - 2/C <O 
F~~ 
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7 .  DISCUSSION AND CONCLUSIONS 

In the  previous sections, the optimization of the lift-to-drag ratio of a slender 

flat-top, affine wing at hypersonic speeds is presented under the assumptions that 

the pressure distribution is Newtonian and the skin-friction coefficient is constant. 

It is shown that a value of the thickness ratio exists which maximizes the 

lift-to-drag ratio; this particular value is such that the friction drag is one-third 

of the total drag. The subsequent optimization of the chordwise and spanwise contours 

is reduced to the extremization of products of power of line integrals related to the 

lift, the pressure drag, and the skin-friction drag. For the chordwise contour, 

the variational approach shows that a linear thickness distribution is the best. 

For the spanwise contour, the variational approach indicates the thickness dis- 

tribution is to  be proportional to the chord distribution. The maximum lift-to-drag 

ratio is independent of the chord distribution and depends on the friction coefficient 

-3 
only. For C = 10 , the lift-to-drag ratio of the variational solution is 5.29.  f 

In closing, the following comments are pertinent: 

(a) The main drawback of the slender wings considered here is the severe 
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heat transfer occurring at the lines of intersection between the surfaces composing 

the vehicle. Consequently, the present sharp-edge configurations must be replaced 

by faired configurations in which the transition from one surface to  another occurs 

with a finite curvature. If this is done, lift-to-drag ratios smaller than those 

predicted here are to  be expected. 

(b) To design a practical hypersonic vehicle, the present idealized con- 

figurations are to be modified by additional elements, such as control surfaces. 

Hence, a further reduction in the lift-to-drag ratio is to be expected. 

(c) The cumulative detrimental effect of the considerations (a) and (b) can 

be offset to  some degree by inclining the upper surface at  a negative angle with 

respect to  the flow, that is, by taking advantage of the added lift produced by the 

flow expansion. If this is done, it is probable that a lift-to-drag ratio in the 

neighborhood of 4 to  5 can be achieved in practice. This value is sufficiently 

high to  encourage further studies of hypersonic cruise vehicles, suborbital 

vehicles, and vehicles fo r  maneuverable reentry from outer space. 
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L E T  O F  CAPTIONS 

Fig. 1. Coordinate system. 
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